[image: image1.jpg]

[image: image3.jpg]

ProgFest 2009

Programming+ Challenge

May the best teams win!

Good luck!

February 14, 2009

1. Range processing

Suppose you have a collection of ranges, each associated with a label. (The ranges are inclusive of their end points.) Write a program to find the range intersections and non-intersections.

Input
Each test case will include a sequence of ranges in the form

Label. low .. high

Output

A minimal ordered list of non-overlapping ranges each of which has an associated list containing the labels of the original ranges that include that range as a subrange.

Sample Input
a. 10 .. 20

b. 5 .. 13

c. 22 .. 50

d. 12 .. 35

e. 40 .. 42

f. 1 .. 3

Sample Output

1 .. 3: f

5 .. 9: b

10 .. 11: a, b

12 .. 13: a, b, d

14 .. 20: a, d

21 .. 21: d

22 .. 35: c, d

36 .. 39: c

40 .. 42: c, e

43 .. 50: c

2. The Blackbody Color Problem
Description:

In the image processing program, Corel PhotoPaint, there is an image processing filter known as “The Blackbody Filter.” The blackbody filter takes a source image and converts each pixel such that the color of the red component of each pixel is always greater than or equal to the green component and the green pixel component is always greater than or equal to the color of the blue pixel (i.e. R ≥ G ≥ B). Furthermore, the sum of the components is either equal to or minimally less than the original. The effect of this processing filter is such that it makes cool images (images with lots of greens and blues) look hotter (Figures 1 and 2).
	[image: image4.jpg]Department of

(BS) Computer Science

@ California State University, Los Angeles

	[image: image2.jpg]

	Figure 1
Original Image
	Figure 2
Image After Blackbody

Given the sample input below, which must be a text file containing a list of colors, convert each color to the closest blackbody color (where R ≥ G ≥ B). Each color (line) in the text file is defined by a comma separated list of color components.

red component, green component, blue component

Each color component is a single-byte integer ranging from 0 (weakest) to 255 (strongest). Output your results to another text file using the same format as the input file, but with all colors converted to the blackbody format.

Sample Input
0, 0, 0
255, 0, 0
0, 255, 0
0, 0, 255

Sample Output
0, 0, 0
255, 0, 0
127, 127, 0
85, 85, 85

3. Word Index
Consider the English alphabet {a,b,c,...z}. Using this alphabet, a set of valid words is to be formed that are in a strict lexicographic order. In this set of valid words, the successive letters of a word are in a strictly ascending order; that is, later letters in a valid word are always after previous letters with respect to their positions in the alphabet list {a,b,c...,z}. For example,

abc aep gwz

are all valid three-letter words, whereas

aab are cat

are not.

For each valid word associate an integer which gives the position of the word in the alphabetized list of words. That is:

a --> 1
b --> 2

.
.
z --> 26
ab --> 27
ac --> 28
.

.
az --> 51
bc --> 52
.
.
vwxyz --> 83681

Your program is to read a series of input lines. Each input line will have a single word on it, that will be from one to five letters long. For each word read, if the word is invalid give the number 0. If the word read is valid, give the word's position index in the above alphabetical list.

Input
The input consists of a series of single words, one per line. The words are at least one letter long and no more that five letters. Only the lower case alphabetic {a,b,...,z} characters will be used as input. The first letter of a word will appear as the first character on an input line.

The input will be terminated by end-of-file.

Output
The output is a single integer, greater than or equal to zero (0) and less than or equal 83681. The first digit of an output value should be the first character on a line. Note: This may not be a default-format. There is one line of output for each input line.

Sample Input
z

a

cat

vwxyz

Sample Output

26

1

0

83681
4. The Letter Carrier’s Rounds

For an electronic mail application you are to describe the SMTP-based communication that takes place between pairs of MTAs. The sender’s User Agent gives a formatted message to the sending Message Transfer Agent (MTA). The sending MTA communicates with the receiving MTA using the Simple Mail Transfer Protocol (SMTP). The receiving MTA delivers mail to the receiver’s User Agent. After a communication link is initialized, the sending MTA transmits command lines, one at a time, to the receiving MTA, which returns a three-digit coded response after each command is processed. The sender commands are shown below in the order sent for each message. There is more than one RCPT TO line when the same message is sent to several users at the same MTA. A message to users at different MTAs requires separate SMTP sessions.

HELO myname
Identifies the sender to the receiver (yes, there is only one L).

MAIL FROM:<sender>
Identifies the message sender

RCPT TO:<user>
Identifies one recipient of the message

DATA
Followed by an arbitrary number of lines of text comprising the message

body, ending with a line containing a period in column one.

QUIT
Terminates the communication.

The following response codes are sent by the receiving MTA:

221
Closing connection (after QUIT)

250
Action was okay (after MAIL FROM and RCPT TO specifying an acceptable user, or completion of a message)

354
Start sending mail (after DATA)

550
Action not taken; no such user here (after RCPT TO with unknown user)

Input
The input contains descriptions of MTAs followed by an arbitrary number of messages. Each MTA description begins with the MTA designation and its name (1 to 15 alphanumeric characters). Following the MTA name is the number of users that receive mail at that MTA and a list of the users (1 to 15 alphanumeric characters each). The MTA description is terminated by an asterisk in column 1. Each message begins with the sending user’s name and is followed by a list of recipient identifiers. Each identifier has the form user@mtaname. The message (each line containing no more than 72 characters) begins and terminates with an asterisk in column 1. A line with an asterisk in column 1 instead of a sender and recipient list indicates the end of the entire input.

Output
For each message, show the communication between the sending and receiving MTAs. Every MTA mentioned in a message is a valid MTA; however, message recipients may not exist at the destination MTA. The receiving MTA rejects mail for those users by responding to the RCPT TO command with the 550 code. A rejection will not affect delivery to authorized users at the same MTA. If there is not at least one authorized recipient at a particular MTA, the DATA is not sent. Only one SMTP session is used to send a message to users at a particular MTA. For example, a message to 5 users at the same MTA will have only one SMTP session. Also a message is addressed to the same user only once. The order in which receiving MTAs are contacted by the sender is unspecified. As shown in the sample output , prefix the communication with the communicating MTA names, and indent each communication line.

Sample Input

MTA London 4 Fiona Paul Heather Nevil

MTA SanFrancisco 3 Mario Luigi Shariff

MTA Paris 3 Jacque Suzanne Maurice

MTA HongKong 3 Chen Jeng Hee

MTA MexicoCity 4 Conrado Estella Eva Raul

MTA Cairo 3 Hamdy Tarik Misa

*

Hamdy@Cairo Conrado@MexicoCity Shariff@SanFrancisco Lisa@MexicoCity

*

Congratulations on your efforts !!

--Hamdy

*

Fiona@London Chen@HongKong Natasha@Paris

*

Thanks for the report! --Fiona

*

*
Sample Output
Connection between Cairo and MexicoCity

 HELO Cairo

 250

 MAIL FROM:<Hamdy@Cairo>

 250

 RCPT TO:<Conrado@MexicoCity>

 250

 RCPT TO:<Lisa@MexicoCity>

 550

 DATA

 354

 Congratulations on your efforts !!

 --Hamdy

 .

 250

 QUIT

 221

Connection between Cairo and SanFrancisco

 HELO Cairo

 250

 MAIL FROM:<Hamdy@Cairo>

 250

 RCPT TO:<Shariff@SanFrancisco>

 250

 DATA

 354

 Congratulations on your efforts !!

 --Hamdy

 .

 250

 QUIT

 221

Connection between London and HongKong

 HELO London

 250

 MAIL FROM:<Fiona@London>

 250

 RCPT TO:<Chen@HongKong>

 250

 DATA

 354

 Thanks for the report! --Fiona

 .

 250

 QUIT

 221

Connection between London and Paris

 HELO London

 250

 MAIL FROM:<Fiona@London>

 250

 RCPT TO:<Natasha@Paris>

 550

 QUIT

 221

5. Flooded!

To enable homebuyers to estimate the cost of flood insurance, a real-estate firm provides clients with the elevation of each 10-meter by 10-meter square of land in regions where homes may be purchased. Water from rain, melting snow, and burst water mains will collect first in those squares with the lowest elevations, since water from squares of higher elevation will run downhill. For simplicity, we also assume that storm sewers enable water from high-elevation squares in valleys (completely enclosed by still higher elevation squares) to drain to lower elevation squares, and that water will not be absorbed by the land, including the regions at the bottom most elevations.

From weather data archives, we know the typical volume of water that collects in a region. As prospective homebuyers, we wish to know the elevation of the water after it has collected in low-lying squares, and also the percentage of the region's area that is completely submerged by water (Note that even with very little rainfall, the water accumulation floods the lowest region.). You are to write the program that provides these results.

Input

The input consists of region descriptions. Each begins with a pair of integers, m and n, each less than 30, giving the dimensions of the rectangular region in 10-meter units. Immediately following are m lines of n integers giving the elevations of the squares in row-major order. Elevations are given in meters, with positive and negative numbers representing elevations above and below sea level, respectively. The final value in each region description is an integer that indicates the number of cubic meters of water that will collect in the region.

Output

Display the water level (in meters accumulated on the ground starting from the lowest level) and the percentage of the region's area under water, each on a separate line.
The water level and percentage of the region's area under water are to be displayed accurate to two fractional digits. Follow the output for each region with a blank line.

Sample Input

3 3

25 37 45

51 12 34

94 83 27
10000
Sample Input

Water level is 34.67 meters.

66.67 percent of the region is under water.

6. Expanding Fractions

In this problem you are to print the decimal expansion of a quotient of two integers. As you well know, the decimal expansions of many integer quotients result in decimal expansions with repeating sequences of digits. You must identify these. You will print the decimal expansion of the integer quotient given, stopping just as the expansion terminates or just as the repeating pattern is to repeat itself for the first time. If there is a repeating pattern, you will say how many of the digits are in the repeating pattern.

Input

There will be multiple input instances, each instance consists of two positive integers on a line. The first integer represents the numerator of the fraction and the second represents the denominator. In this problem, the numerator will always be less than the denominator and the denominator will be less than 1000. Input terminates when numerator and denominator are both zero.

Output

For each input instance, the output should consist of the decimal expansion of the fraction, starting with the decimal point. If the expansion terminates, you should print the complete decimal expansion. If the expansion is infinite, you should print the decimal expansion up to, but not including the digit where the repeated pattern first repeats itself. For instance, 4/11 = .3636363636..., should be printed as .36. (Note that the shortest repeating pattern should be found. In the above example, 3636 and 363636, among others, are repeating patterns, but the shortest repeating pattern is 36.) Since some of these expansions may be quite long, multiple line expansions should each contain exactly 50 characters on each line (except the last line, which, of course, may be shorter) | that includes the beginning decimal point. (Helpful hint: The number of digits before the pattern is repeated will never be more than the value of the denominator.)

On the line immediately following the last line of the decimal expansion there should be a line saying either "This expansion terminates.", or "The last n digits repeat forever.", where n is the number of digits in the repeating pattern.

Output for each input instance (including the last input instance) should be followed by a blank line.

Sample Input

3 7

345 800

112 990

53 122

0 0

Sample Output

.428571

The last 6 digits repeat forever.

.43125

This expansion terminates.

.113

The last 2 digits repeat forever.

.4344262295081967213114754098360655737704918032786

885245901639

The last 60 digits repeat forever.
7. Optimal Polynomial
The positive integer K and a string S, that contains digits from 0 to 9, are given. The string S can be partitioned into some not empty substrings S[0], S[1], S[2], … so that S[0] + S[1] + S[2] + … = S (+ is a concatenation operation, S[0] is the head of S). Each partition of the string S into M substrings defines a polynom P(x) = a[0] + a[1]*x + a[2] * x2 + … + a[M] * xM, where a[i] is the number designated by the substring s[i]. For example, the string S = 1204 can be partitioned into S = 1 + 204 (polynom P(x) = 1 + 204 * x), into S = 1 + 2 + 04 (polynom P(x) = 1 + 2 * x + 4 * x2) etc. You must write a program that finds the polynom that has the minimum value P(K) from all possible polynoms that can be built from S. It is known that the maximum magnitude of the result cannot exceed 12*1014.

Input

There is one number in the first line – the number of tests. Each test is on a single line, containing the number K and the string S separated by one space.

Output

For each test you must write on one line the polynom that has the minimum value P(K). If there exist several optimal polynoms, you must write the one that has the minimal degree. The polynom must be printed beginning with the lowest degree.

For the second test of Sample Input you have K = 3, S = 123. S can be partitioned into (all possible partitions):

S = 123 polynom: P(X) = 123 value:
P(3) = 123

S = 1 + 23
polynom: P(X) = 1 + 23 * X

value:
P(3) = 70

S = 12 + 3
polynom: P(X) = 12 + 3 * X

value:
P(3) = 21

S = 1 + 2 + 3
polynom: P(X) = 1 + 2 * X + 3 * X2
value:
P(3) = 34

Minimum polynom’s value is 21 on partition S = 12 + 3, so the answer is P(X) = 12+3*X.

Sample Input

3

1 1234

3 123

1 1001
Sample Output

1 + 2 * X^1 + 3 * X^2 + 4 * X^3

12 + 3 * X^1

1 + 1 * X^1
8. Satellite Images
A Weather Forecasting service receives images from its weather satellite every day. These images consist of a dark background on which there are white areas indicating cloud accumulation. The SWF service has a rather simplified model for storms - it has decided any white area exceeding a certain size must be a storm. For our purposes the satellite image is represented by a grid of #'s and .'s. A # denotes a cloud free area while a . indicates the presence of a cloud. Each point on the grid has up to 8 neighbors (north-east, north, north-west, east, west, south-east, south and south-west) and a cloud consists of a contiguous collection of .'s.

For example, in the following image, there are 4 patches of cloud.

#####.#####

####.####.#

###..##.#.#

##...######

######.....

###########

If the threshold for the identification of a storm is 4 units then there are only 2 storms, marked by 1 and 2 below:

#####1#####

####1####.#

###11##.#.#

##111######

######22222

###########

You will be given the satellite map and the threshold. Your task is the determine the number of storms as well as the size of the largest storm.

Input format

The first line of the input contains two integers M and N indicating the number of rows and columns in the satellite image. This is followed by M lines describing the satellite image. Line M+2 contains a single positive integer K indicating the threshold that determines a storm.

Output format

Two space separated integers n and s in a single line indicating the number of storms and the size of the largest storm respectively.

Sample input

6 11

#####.#####

####.####.#

###..##.#.#

##...######

######.....

###########

4

Sample output

2 7

9. Repetition-free numbers
A repetition-free number is one in which each digit {1,2,3,…,9} appears at most once and the digit 0 does not appear. A repetition-free number can have at most nine digits, but may also have fewer than nine digits. Some examples of repetition-free numbers are 9, 32, 489, 98761 and 983245.

You will be given an integer N with at most nine digits. Your task is to print out the smallest repetition-free number bigger than N. For example, for 99 the answer is 123, for 881 the answer is 891, and for 133 the answer is 134.

Input format

A single line with a single integer with at most 9 digits.

Output format

A single line containing the smallest repetition-free number bigger than the given number. If there is no repetition-free number bigger than the given number, print 0.

Example

We now illustrate the input and output formats using the example described above.

Sample input

99

Sample output

123

ProgFest 2009 Page #7

